
SOLIDIKEY-AUDIT-REPORT 1/10/2021

1



SOLIDIKEY-AUDIT-REPORT 1/10/2021

Contents

1. Introduction
1.1. About Project
1.2. Audit Goal
1.3. Disclaimer

2. Findings
2.1. Data Validation Issues - PASS
2.2. Random Number Issues - PASS
2.3. State Issues - PASS
2.4. Error Conditions, Return Values, Status Codes - PASS
2.5. Data Processing Errors - PASS
2.6. Bad Coding Practices - PASS
2.7. Permission Issues - PASS
2.8. Business Logic Errors - PASS
2.9. Complexity Issues - PASS

3. Conclusion
4. Appendix

4.1. Function Graph
4.2. Inheritance Chart

2



SOLIDIKEY-AUDIT-REPORT 1/10/2021

1. Introduction

1.1. About Project

Project Name: Beast DAO
The contract is deployed at 0xdbb2f12cb89af05516768c2c69a771d92a25d17c.
The total Supply of BEAST is 500,000. There are no accessible mint functions present within the smart contract.
The current owner can transfer ownership to another address.
The contract allows token holders to destroy their own tokens and those that they have an allowance for.
Utilization of SafeMath to prevent overflows and ensure safe transfers and properly follows the ERC20 standard.

1.2. Audit Goal

Category Content Result

Data Validation Issues
Incorrect Behavior Order: Early
Validation,Permissive List of
Allowed Inputs,Unchecked Input for
Loop Condition

PASS

Random Number Issues
Small Space of Random
Values,Incorrect Usage of Seeds in
Pseudo-Random Number
Generator (PRNG)

PASS

State Issues
External Control of System or
Configuration Setting,Incomplete
Internal State Distinction,Passing
Mutable Objects to an Untrusted
Method

PASS

Error Conditions,
Return Values, Status Codes

Unchecked Return
Value,Unexpected Status Code or
Return Value,Reachable
Assertion,Detection of Error
Condition Without Action

PASS

Data Processing Errors
Collapse of Data into Unsafe
Value,Improper Handling of
Parameters, Comparison of
Incompatible Types

PASS

Bad Coding Practices
Missing Default Case in Switch
Statement,Excessive Index Range
Scan for a Data Resource,Excessive
Platform Resource Consumption
within a Loop

3

https://beast.finance/
https://etherscan.io/address/0xdbb2f12cb89af05516768c2c69a771d92a25d17c


SOLIDIKEY-AUDIT-REPORT 1/10/2021

PASS

Permission Issues
Incorrect Default
Permissions,Incorrect
Execution-Assigned
Permissions,Improper
Preservation of Permissions

PASS

Business Logic Errors
Unverified Ownership,Incorrect
Ownership Assignment,Allocation
of Resources Without Limits or
Throttling

PASS

Complexity Issues Loop Condition Value Update within the Loop,Excessively Deep Nesting PASS

1.3. Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given smart
contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further findings of security issues. As
one audit-based assessment cannot be considered comprehensive, we always recommend proceeding with several
independent audits and a public bug bounty program to ensure the security of smart contract(s). Last but not least, this
security audit should not be used as investment advice.

4



SOLIDIKEY-AUDIT-REPORT 1/10/2021

2. Findings

2.1. Data Validation Issues - PASS

Weaknesses in this category are related to a software system's components for input validation, output validation, or
other kinds of validation. Validation is a frequently-used technique for ensuring that data conforms to expectations before
it is further processed as input or output. There are many varieties of validation ). Validation is distinct from other
techniques that attempt to modify data before processing it, although developers may consider all attempts to product
"safe" inputs or outputs as some kind of validation. Regardless, validation is a powerful tool that is often used to
minimize malformed data from entering the system, or indirectly avoid code injection or other potentially-malicious
patterns when generating output. The weaknesses in this category could lead to a degradation of the quality of data flow
in a system if they are not addressed.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.2. Random Number Issues - PASS

Weaknesses in this category are related to a software system's random number generation. The number of possible
random values is smaller than needed by the product, making it more susceptible to brute force attacks. The code uses a
Pseudo-Random Number Generator (PRNG) that does not correctly manage seeds.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.3. State Issues - PASS

Weaknesses in this category are related to improper management of system state. One or more system settings or
configuration elements can be externally controlled by a user. The software does not properly determine which state it is
in, causing it to assume it is in state X when in fact it is in state Y, causing it to perform incorrect operations in a
security-relevant manner.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.4. Error Conditions, Return Values, Status Codes - PASS

This category includes weaknesses that occur if a function does not generate the correct return/status code, or if the
application does not handle all possible return/status codes that could be generated by a function. This type of problem is
most often found in conditions that are rarely encountered during the normal operation of the product. Presumably, most
bugs related to common conditions are found and eliminated during development and testing. In some cases, the attacker
can directly control or influence the environment to trigger the rare conditions.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.5. Data Processing Errors - PASS

Weaknesses in this category are typically found in functionality that processes data. Data processing is the
manipulation of input to retrieve or save information. The software filters data in a way that causes it to be reduced or
"collapsed" into an unsafe value that violates an expected security property. The software does not properly handle when

5



SOLIDIKEY-AUDIT-REPORT 1/10/2021

the expected number of values for parameters, fields, or arguments is not provided in input, or if those values are
undefined.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.6. Bad Coding Practices - PASS

Weaknesses in this category are related to coding practices that are deemed unsafe and increase the chances that an
exploitable vulnerability will be present in the application. These weaknesses do not directly introduce a vulnerability,
but indicate that the product has not been carefully developed or maintained. If a program is complex, difficult to
maintain, not portable, or shows evidence of neglect, then there is a higher likelihood that weaknesses are buried in the
code.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.7. Permission Issues - PASS

Weaknesses in this category are related to improper assignment or handling of permissions. While it is executing,
the software sets the permissions of an object in a way that violates the intended permissions that have been specified by
the user. The software does not preserve permissions or incorrectly preserves permissions when copying, restoring, or
sharing objects, which can cause them to have less restrictive permissions than intended.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.8. Business Logic Errors - PASS

Weaknesses in this category identify some of the underlying problems that commonly allow attackers to manipulate
the business logic of an application. Errors in business logic can be devastating to an entire application. They can be
difficult to find automatically, since they typically involve legitimate use of the application's functionality. However,
many business logic errors can exhibit patterns that are similar to well-understood implementation and design
weaknesses.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

2.9. Complexity Issues - PASS

Weaknesses in this category are associated with things being overly complex. The code uses a loop with a control
flow condition based on a value that is updated within the body of the loop or contains a callable or other code grouping
in which the nesting / branching is too deep.

Test results: No related vulnerabilities in smart contract code. Safety advice:None.

6



SOLIDIKEY-AUDIT-REPORT 1/10/2021

3. Conclusion

Use case of the smart contract is simple and the code is relatively small.Altogether, the code is written and
demonstrates effective use of abstraction, separation of concerns, and modularity. No security issues from external
attackers were identified and therefore the contract is good to be deployed on public networks as per the audit team’s
analysis.

7



SOLIDIKEY-AUDIT-REPORT 1/10/2021

4. Appendix

4.1. Function Graph



SOLIDIKEY-AUDIT-REPORT 1/10/2021



SOLIDIKEY-AUDIT-REPORT 1/10/2021

4.2. Inheritance Chart


